Spring/Summer 2012: NYFW 2012 – spring is in the air!
September 17, 2011
Book review – Imran Khan’s Pakistan, a personal history
September 26, 2011

Unfortunately people who usually write text books or fact books are no writers. I think they should just hire real writers like Bryson…if I had a book like ‘a short history of nearly everything’ at school. Things might have been indeed different. I mean, the book is readable, accessible, and full of fun facts, not to mention, interesting…furthermore, it’s an enjoyable read By Fareeha Qayoom

By Fareeha Qayoom



ight now, I am going through a phase…history. Any history. Whenever I stop by at Readings now, I go to the general history and world history section first – I am reading at least ten books on various histories – for example, a book by Stephen Yafa’s – Cotton, the biography of  a revolutionary fiber, Erik Sass and Steve Wiegand with Will Pearson and Mangesh Hattikudur’s History of the world, Michael Hamilton Morgan’s Lost History, The Enduring legacy of Muslim Scientists, Thinkers and Artists, Assouline’s Music Game Book, A world history of 20th Century Music and Fashion Game Book, A world history of 20th Century Fashion but there is only one book that I couldn’t put down till I finished it – Bill Bryson’s ‘A short history of nearly everything.’


bill bryson a short history of nearly everything book cover

Book Cover 2003 Edition, PKR 695 at Readings

Again, I picked it up by chance during one Saturday in Ramadan. (They were pretty good to me and let me browse through their books sitting at the café which was closed to general public. They made a special exception for me…no, I was fasting – I just like sprawling on couple of their chairs with my feet up and with a stack of books beside me on the table while I make my selections – it’s just more comfortable that way – know what I mean?) Anyway, I was hooked from page one…I have already picked up another book by the same author on the strength of the first book – ‘At home’.


Unfortunately people who usually write text books or fact books are no writers. I think they should just hire real writers like Bryson…if I had a book like ‘a short history of nearly everything’ at school. Things might have been indeed different. I mean, the book is readable, accessible, and full of fun facts, not to mention, interesting…furthermore, it’s an enjoyable read. Unfortunately, they don’t want you to enjoy yourself at school. They want you to be miserable and dread exams! Furthermore, they like to make any subject as complicated as possible for you by using obscure words (as if they have swallowed a dictionary!) and long winded complicated explanation of things which could be explained in a simpler way; hence, boring text books that no one actually wants to read, even the students… Like I said, Bryson’s book is anything but boring…even if its non-fiction.


So what do I think of Darwin’s theory of Evolution after reading this book? Well, I still believe in God  (and still don’t believe in Darwin’s theory that God was not required to create the universe or indeed the first human – it was the result of chance, in fact, a series of random chances and then mutation and natural selection and humanity has all descended from Apes); precisely because of the science of Genetics and the presence of DNA in all species basic cell structure which interestingly makes the majority of scientists swing the other way including Bryson who is telling the story… it does the opposite with me – it just reinforces my belief in God.


My point, there was no need for life to go from simple to complex because life is complex at molecular and cellular level to begin with – the miracle is not evolution of life from simple life forms to complex/ sophisticated life forms – the miracle is the creation of the universe itself, our planet earth and the creation of the first cell! Conclusions don’t obscure the facts…


Here’s an excerpt from Chapter 26 “The stuff of Life,” page 498-501




Interestingly, the amount of genetic material and how it is organized doesn’t necessarily, or even generally, reflect the level of sophistication of the creature that contains it. We have forty-six chromosomes, but some ferns have more than six hundred. The lungfish, one of the least evolved of all complex animals, has forty times as much DNA as we have. Even the common newt is more genetically splendorous than we are, by a factor of five.


Clearly it is not the number of genes you have, but what you do with them. This is a very good thing because the number of genes in humans has taken a big hit lately. Until recently it was thought that humans had at least 100,000 genes, possibly a good many more, but that number was drastically reduced by the first results of the Human Genome Project, which suggested a figure more like 35,000 or 40,000 genes—about the same number as are found in grass. That came as both a surprise and a disappointment.


It won’t have escaped your attention that genes have been commonly implicated in any number of human frailties. Exultant scientists have at various times declared themselves to have found the genes responsible for obesity, schizophrenia, homosexuality, criminality, violence, alcoholism, even shoplifting and homelessness. Perhaps the apogee (or nadir) of this faith in biodeterminism was a study published in the journal Science in 1980 contending that women are genetically inferior at mathematics. In fact, we now know, almost nothing about you is so accommodatingly simple.


This is clearly a pity in one important sense, for if you had individual genes that determined height or propensity to diabetes or to baldness or any other distinguishing trait, then it would be easy—comparatively easy anyway—to isolate and tinker with them. Unfortunately, thirty-five thousand genes functioning independently is not nearly enough to produce the kind of physical complexity that makes a satisfactory human being. Genes clearly therefore must cooperate. A few disorders—hemophilia, Parkinson’s disease, Huntington’s disease, and cystic fibrosis, for example—are caused by lone dysfunctional genes, but as a rule disruptive genes are weeded out by natural selection long before they can become permanently troublesome to a species or population. For the most part our fate and comfort—and even our eye color—are determined not by individual genes but by complexes of genes working in alliance. That’s why it is so hard to work out how it all fits together and why we won’t be producing designer babies anytime soon.


In fact, the more we have learned in recent years the more complicated matters have tended to become. Even thinking, it turns out, affects the ways genes work. How fast a man’s beard grows, for instance, is partly a function of how much he thinks about sex (because thinking about sex produces a testosterone surge). In the early 1990s, scientists made an even more profound discovery when they found they could knock out supposedly vital genes from embryonic mice, and the mice were not only often born healthy, but sometimes were actually fitter than their brothers and sisters who had not been tampered with. When certain important genes were destroyed, it turned out, others were stepping in to fill the breach. This was excellent news for us as organisms, but not so good for our understanding of how cells work since it introduced an extra layer of complexity to something that we had barely begun to understand anyway.


It is largely because of these complicating factors that cracking the human genome became seen almost at once as only a beginning. The genome, as Eric Lander of MIT has put it, is like a parts list for the human body: it tells us what we are made of, but says nothing about how we work. What’s needed now is the operating manual—instructions for how to make it go. We are not close to that point yet. So now the quest is to crack the human proteome—a concept so novel that the term proteome didn’t even exist a decade ago. The proteome is the library of information that creates proteins. “Unfortunately,” observed Scientific American in the spring of 2002, “the proteome is much more complicated than the genome.”


That’s putting it mildly. Proteins, you will remember, are the workhorses of all living systems; as many as a hundred million of them may be busy in any cell at any moment. That’s a lot of activity to try to figure out. Worse, proteins’ behavior and functions are based not simply on their chemistry, as with genes, but also on their shapes. To function, a protein must not only have the necessary chemical components, properly assembled, but then must also be folded into an extremely specific shape. “Folding” is the term that’s used, but it’s a misleading one as it suggests a geometrical tidiness that doesn’t in fact apply. Proteins loop and coil and crinkle into shapes that are at once extravagant and complex. They are more like furiously mangled coat hangers than folded towels.


Moreover, proteins are (if I may be permitted to use a handy archaism) the swingers of the biological world. Depending on mood and metabolic circumstance, they will allow themselves to be phosphorylated, glycosylated, acetylated, ubiquitinated, farneysylated, sulfated, and linked to glycophosphatidylinositol anchors, among rather a lot else. Often it takes relatively little to get them going, it appears. Drink a glass of wine, as Scientific American notes, and you materially alter the number and types of proteins at large in your system. This is a pleasant feature for drinkers, but not nearly so helpful for geneticists who are trying to understand what is going on.


It can all begin to seem impossibly complicated, and in some ways it is impossibly complicated. But there is an underlying simplicity in all this, too, owing to an equally elemental underlying unity in the way life works. All the tiny, deft chemical processes that animate cells—the cooperative efforts of nucleotides, the transcription of DNA into RNA—evolved just once and have stayed pretty well fixed ever since across the whole of nature. As the late French geneticist Jacques Monod put it, only half in jest: “Anything that is true of E. coli must be true of elephants, except more so.”


Every living thing is an elaboration on a single original plan. As humans we are mere increments—each of us a musty archive of adjustments, adaptations, modifications, and providential tinkerings stretching back 3.8 billion years. Remarkably, we are even quite closely related to fruit and vegetables. About half the chemical functions that take place in a banana are fundamentally the same as the chemical functions that take place in you.


It cannot be said too often: all life is one. That is, and I suspect will forever prove to be, the most profound true statement there is.








No votes yet.
Please wait...
Fareeha Qayoom
Fareeha Qayoom
Publisher and editor-in-chief of Tkfr.com and former print editions of The Knit-Xtyle Fashion Review (tkfr), a trade newsletter for the textile and apparel industry of Pakistan. In short, Publisher, editor, and a blogger. In addition, she has served as Managing Editor of MIT Technology Review Pakistan, print and web editions (2015-16). Total of 7 editions were published under her leadership by ITU, Punjab's first public technology university under the license of MIT Technology Review (USA). She has also managed Value Mag in the same capacity, a real estate and lifestyle magazine for Value TV - 2008-9. Published freelancer for The News on Sunday 1994-96. Fareeha has over 21 years of solid management experience – of managing brands (like Harley Davidson, Munsingwear, Chaps, Chaps Ralph Lauren etc.,), Retailers (like Target, Mervyns, Kohl's, Marks and Spencer etc.,), customers (VPs, Product Managers, Unit Managers, and Buyers), and products (apparel - woven, knits, men's, women's, children's, Print and online publishing units), projects, teams, and processes, information, content, and data, staff, vendors, and time. Versatile and adaptable with international exposure, communication and language skills (oral and written), and a consistent track record of achieving company targets and objectives, plus a MA in Political Science from Punjab University, a MSc in Economics from La Salle University, Louisiana, USA, and a BA in Economics from Kinnaird College for Women.


  1. More reading?

    You can download a copy of the electronic version here…

    No votes yet.
    Please wait...
  2. Science’s eclectic theories
    Updated yesterday

    NEW YORK: From Darwinian evolution to the idea that personality is largely shaped by chance, the favorite theories of the world’s most eminent thinkers are as eclectic as science itself.

    Every January, John Brockman, the impresario and literary agent who presides over the online salon Edge.org, asks his circle of scientists, digerati and humanities scholars to tackle one question.

    In previous years, they have included “how is the Internet changing the way you think?” and “what is the most important invention in the last 2,000 years?”

    This year, he posed the open-ended question “what is your favorite deep, elegant or beautiful explanation?”

    The responses, released at midnight on Sunday, provide a crash course in science both well known and far out-of-the-box, as admired by the likes of Astronomer Royal Martin Rees, physicist Freeman Dyson and evolutionary biologist Richard Dawkins.


    No votes yet.
    Please wait...

Leave a Reply